875 research outputs found

    A Flexible Simple Thermostat for Small Objects and the Range of 100 to 400 K

    Get PDF
    A flexible, inexpensive thermostat for the temperature range 100 to 400 K is described. Liquid nitrogen is the coolant and a gas serves as transfer medium. The temperature can be set to better than 1 K and is held there within (1/2) K by an electronic control system. The relatively small working volume of the order of 10 cm^3 allows quick changes of temperature, a desirable feature in typical semiconductor experiments

    A flexible, simple thermostat for small objects and the temperature range of 100 deg K to 400 deg K

    Get PDF
    Thermostat for small objects with temperature range of 100 to 400

    Search for Exotic Muon Decays

    Get PDF
    Recently, it has been proposed that the observed anomaly in the time distribution of neutrino induced reactions, reported by the KARMEN collaboration, can be interpreted as a signal from an exotic muon decay branch mu+ to e+ X. It has been shown that this hypothesis gives an acceptable fit to the KARMEN data if the boson X has a mass of m_X=103.9MeV/c^2, close to the kinematical limit. We have performed a search for the X particle by studying for the first time the very low energy part of the Michel spectrum in mu+ decays. Using a HPGe detector setup at the muE4 beamline at PSI we find branching ratios BR(mu+ to e+ X)<5.7e-4 (90% C.L.) for most of the region 103MeV/c^2<m_X<105MeV/c^2.Comment: 9 page

    Noise and Equivalent Circuit of Double Injection

    Get PDF
    Measurements of the high‐frequency noise of a silicon double‐injection diode result in 〈i^2〉 = α⋅4kT(1/r)Δf with α=1.04 and in agreement with the literature. A new interpretation demands Nyquist noise with α≡1 in these devices at high frequencies. This is in accord with an equivalent circuit derived for the double‐injection process. Speculations are made on the general validity of Nyquist noise in nonlinear devices at high frequencies. In addition, generation‐recombination noise is suggested as the prime source of the low‐frequency noise

    Collision damping in the pi 3He -> d'N reaction near the threshold

    Full text link
    We present a simple quantum mechanical model exploiting the optical potential approach for the description of collision damping in the reaction pi 3He -> d'N near the threshold, which recently has been measured at TRIUMF. The influence of the open d'N -> NNN channel is taken into account. It leads to a suppression factor of about ten in the d' survival probability. Applications of the method to other reactions are outlined.Comment: RevTeX4, 14 pages, 3 Postscript figures, uses epsfig.sty, to appear in Phys.Rev.

    Search for Narrow NNpi Resonances in Exclusive p p -> p p pi+ pi- Measurements

    Get PDF
    Narrow structures in the range of a few MeV have been searched for in p p pi+ and p p pi- invariant mass spectra obtained from exclusive measurements of the p p -> p p pi+ pi- reaction at Tp = 725, 750 and 775 MeV using the PROMICE/WASA detector at CELSIUS. The selected reaction is particularily well suited for the search for NN and / or N Delta decoupled dibaryon resonances. Except for a possible fluctuation at 2087 MeV/c^2 in Mpppi- no narrow structures could be identified neither in Mpppi+ nor in Mpppi- on the 3 sigma level of statistical significance, giving an upper limit (95% C.L.) for dibaryon production in this reaction of sigma < 20 nb for 2020 MeV/c^2 < m(dibaryon) < 2085 MeV/c^2Comment: 3 pages, 4 figure

    Quark Cluster Model Study of Isospin-Two Dibaryons

    Get PDF
    Based on a quark cluster model for the non-strange sector that reproduces reasonably well the nucleon-nucleon system and the excitation of the Δ\Delta isobar, we generate a nucleon-Δ\Delta interaction and present the predictions for the several isospin two channels. The only attractive channels are 0+0^+ and 00^-, but not attractive enough to generate a resonance. If a resonance is artificially generated and is required to have the observed experimental mass, then our model predicts a width that agrees with the experimental result.Comment: 12 pages, 5 poscript figures available under request. To appear in Phys. Rev.

    Three-body decay of the d* dibaryon

    Full text link
    Under certain circumstances, a three-body decay width can be approximated by an integral involving a product of two off-shell two-body decay widths. This ``angle-average'' approximation is used to calculate the πNN\pi NN decay width of the d(Jπ=3+,T=0)d^*(J^\pi=3^+, T=0) dibaryon in a simple Δ2\Delta^2 model for the most important Feynman diagrams describing pion emissions with baryon-baryon recoil and meson retardation. The decay width is found to be about 0.006 (0.07, 0.5) MeV at the dd^* mass of 2065 (2100, 2150) MeV for input dynamics derived from the Full Bonn potential. The smallness of this width is qualitatively understood as the result of the three-body decay being ``third forbidden''. The concept of \ell forbiddenness and the threshold behavior of a three-body decay are further studied in connection with the πNN\pi NN decay of the dibaryon d(Jπ=0,T=0or2)d'(J^\pi=0^-, T=0 or 2) where the idea of unfavorness has to be introduced. The implications of these results are briefly discussed.Comment: 15 pages, RevTeX, two-column journal style, six figure
    corecore